Directional Multiresolution Image Representations

نویسنده

  • Minh N. Do
چکیده

Efficient representation of visual information lies at the foundation of many image processing tasks, including compression, filtering, and feature extraction. Efficiency of a representation refers to the ability to capture significant information of an object of interest in a small description. For practical applications, this representation has to be realized by structured transforms and fast algorithms. Recently, it has become evident that commonly used separable transforms (such as wavelets) are not necessarily best suited for images. Thus, there is a strong motivation to search for more powerful schemes that can capture the intrinsic geometrical structure of pictorial information. This thesis focuses on the development of new “true” two-dimensional representations for images. The emphasis is on the discrete framework that can lead to algorithmic implementations. The first method constructs multiresolution, local and directional image expansions by using non-separable filter banks. This discrete transform is developed in connection with the continuous-space curvelet construction in harmonic analysis. As a result, the proposed transform provides an efficient representation for two-dimensional piecewise smooth signals that resemble images. The link between the developed filter banks and the continuous-space constructions is set up in a newly defined directional multiresolution analysis. The second method constructs a new family of block directional and orthonormal transforms based on the ridgelet idea, and thus offers an efficient representation for images that are smooth away from straight edges. Finally, directional multiresolution image representations are employed together with statistical modeling, leading to powerful texture models and successful image retrieval systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CRISP-contourlets: a critically sampled directional multiresolution image representation

Directional multiresolution image representations have lately attracted much attention. A number of new systems, such as the curvelet transform and the more recent contourlet transform, have been proposed. A common issue of these transforms is the redundancy in representation, an undesirable feature for certain applications (e.g. compression). Though some critically sampled transforms have also...

متن کامل

Multidimensional Filter Banks and Multiscale Geometric Representations

Thanks to the explosive growth of sensing devices and capabilities, multidimensional (MD) signals — such as images, videos, multispectral images, light fields, and biomedical data volumes — have become ubiquitous. Multidimensional filter banks and the associated constructions provide a unified framework and an efficient computational tool in the formation, representation, and processing of thes...

متن کامل

MRF-based texture segmentation using wavelet decomposed images

In recent textured image segmentation, Bayesian approaches capitalizing on computational efficiency of multiresolution representations have received much attention. Most of previous researches have been based on multiresolution stochastic models which use the Gaussian pyramid image decomposition. In this paper, motivated by nonredundant directional selectivity and highly discriminative nature o...

متن کامل

Wavelet Based Contourlet Transform for Image Compression

Wavelet transforms are not capable of reconstructing curved images perfectly, hence we go for this new concept, called Contourlet Transform. It is a multiresolution and directional decomposition of a signal using a combination of Laplacian Pyramid (LP) and a Directional Filter Bank (DFB). The Contourlet transform has good approximation properties for smooth 2D functions and finds a direct discr...

متن کامل

An Efficient Directional Multiresolution Image Representation using Contourlet Transform

The limitations of commonly used separable extensions of one-dimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known.A ―true‖ two dimensional transform that can capture the intrinsic geometrical structure that is key in visual information. The main challenge in exploring geometry in images comes from the discrete nature of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001